FinnCERES Flagship for Materials Bioeconomy

Industry meets FinnCERES Kristiina Kruus

5.11.2018 Paasitorni, Helsinki, Finland

Global challenges

- Climate change
- Resource sufficiency
- Quality of life

Urgent need to transform the existing materials paradigm

Aims of the flagship

• Overall aim

 To establish a globally recognized Competence Cluster in the area of materials bioeconomy in Finland

• Specific aims

- Research and control the interactions of lignocellulosics
- Develop methods for lignocellulose disassembly
- Create disruptive methods for analysis (theoretical, experimental and computational)
- Develop advanced material solutions and applications
 - Development of e.g. structured and light-weight materials, textiles, biocomposites and food applications
 - Future added-value applications, e.g. energy harvesting, capturing from air and water, nanophotonics and optoelectronics

From fundamental research to industrial implementation and innovations

Main research areas

1. Fundamentals

- Interactions (water, cellulose, hemicellulose, lignin, fibre)
- Architecture of lignocellulose and access to the structure
- Modelling

2. Processing

- Biomass fractionation
- Biomass modification

3. Applications

- Development of e.g. structured and light-weight materials, textiles, biocomposites and food applications
- Future added-value applications, e.g. energy harvesting, capturing from air and water, nanophotonics and optoelectronics

Aalto-VTT collaboration - Solving challenges of great importance together

FinnCERES Competence Center

From lignocellulose science to materials bioeconomy

- 1st in the world strategic research of its kind
 - Unique world-class infrastructure

Aalto University

- Multidisciplinary science, art, technology and business
- Highly ranked scientific outcome
- Educational aspects

Inspiring innovation and entrepreneurial environment

- Multidisciplinary applied research and innovation
- Global industrial networks
- Piloting capabilities

FinnCERES budgets for eight years

total budget 24 M€ from the Academy of Finland

Research examples

Role of oxygen in fractionation

Hypotheses

Oxygen induces

- Formation of Lignin-Carbohydrate Linkages (LCC)
- Auto-oxidation of extractives: → polymeric compounds and chromophores hindering fractionation

Oxygen induces

- Improved water solubility of lignin and thus delignification
- Surface active properties to lignin, necessary e.g. for dispersant applications

Capturing with cellulose materials

Using intrinsic properties of cellulosic materials we can for example:

- 1. Capture submerged microplastic beads by hydrophobic interactions
- 2. Capture floating microplastic beads by cohesion
- 3. Capture small molecules by specific and non-specific interactions

0.1% PE in water 1% PE in water

Orelma et al. 2018. Cyclodextrin-Functionalized Fiber Yarns Spun from Deep Eutectic Cellulose Solutions for Nonspecific Hormone Capture in Aqueous Matrices. Biomacromolecules 19, 652-661.

Light-weight structures

- Complex geometries and functional structures by disruptive technologies e.g. foam forming and additive manufacturing
- Intelligent design of the multi-scale structure
- Understanding of interactions of lignocellulosic materials
- Enhanced mechanical and functional properties (like fire retardant, thermal insulation and moisture tolerance) for construction, packaging and other end-use applications

Finely assembled structures (origamis) modelling structures

Enhancing mechanical performance of cellulose materials with designed structural complexity

Photonics, optoelectronics and electronics

Cellulose nanocrystals are single crystalline with translational symmetry \rightarrow Dispersive band structure, and consequently <u>nanocellulose is a wide band gap</u> <u>semiconductor</u>

Simao et al., 2015. Optical, mechanical, and vibrational properties of nanofibrillated cellulose: towards a robust platform for next-generation green technologies. Carbohydr. Polym. 126, 40.

Nanocellulose has a large **optical** band gap and low absorption, is transparent down to 235 nm wavelength, emits light, can be dyed, and patterned by casting or nanoimprinting \rightarrow Very interesting material for photonics

Mäkelä et al., 2016. Fabrication of micropillars on nanocellulose films using a roll-to-roll nanoimprinting method, Microelectr. Eng. 163, 1-6.

Next step is to investigate the **electrical** properties, doping and contacting \rightarrow Nanocellulose is a new **green** material for <u>electronics and optoelectronics</u> (?)

Broad band waveguides

Thank you for your attention!